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A control scheme is proposed to guarantee the asymptotic stability of a given programmed motion of a rigid body rotating about 
a fixed point. The body is controlled by means of a couple of reactive forces, or the control action is created by rotating flywheels. 
The inertial parameters and angular momentum of the system are estimated while the motion is in progress. The control is 
synthesized by expressing the equations of dynamics in a form that is linear in the parameter vector and by using the passivity 
property of the dynamical object. A law is proposed for the control and for adjusting the parameters that guarantees the asymptotic 
stability of the motion ~tad, for programmed motions that satiny the condition of non-vanishing action, guarantees the convergence 
of the vector of adjusted parameters to its true value. The domain in phase space for which exponential stabilization is achieved 
is determined. © 1997 Elsevier Science Ltd. All rights reserved. 

An analogous problem has been considered previously [1]; the control law obtained there for the rotary 
motion of an unmanned aircraft requires the computation of complicated non-linear expressions, 
including the Jacobian of the kinematic relations and its derivatives, which are not well-conditioned 
for rotations close to __.x. 

Unlike those results, the algorithms proposed below have no singularities anywhere in phase space. 
A dynamical control of a rigid body for certain inertial parameters was constructed in [2]. Recurrent 

algorithms for setti~ng up the equations of dynamics have been used to synthesize a control that ensures 
stabilization of the programmed motion of a multiple chain of rigid bodies [3]. 

1. D Y N A M I C A L  M O D E L  OF T H E  S Y S T E M  

We will consider a rigid body P0 with a fixed point O at its centre of mass. Together with P0 we consider 
a system of coordinates Oxyz attached to the body and a triple of  mutually orthogonal unit vectors cl, 
c2, c3 occupying a fixed position in Oxyz. A programmed motion is defined by a triple of mutually 
orthogonal unit vectors Sx, s2, s3 rotating as a rigid body at angular velocity c0d relative to the absolute 
system of coordin~ttes O~rl~. 

Rotary motion of the body is described by Euler 's equations of  dynamics 

Mob + co x Moo = u (1.1) 

where co is the angalar velocity of the controlled body and u e R 3 is a vector of control torques created 
by couples of reactive forces. 

If P0 is controlled by means of rotating symmetric flywheels P1 . . . . .  Pro, then, when there are no ex- 
ternal forces, the equations of motion of the system of bodies may be written as follows [2, 4]: 

/I1 

M d O + O 3 x R t L  o = u ,  L o =const, M = 0  0 -  ~.Cibibti, u = Y.bi'c i (1.2) 
i=1  i=1  

where 0 0 is the ineJ~ia tensor of the system of bodies, b i is a unit vector along the axis of rotation of the 
ith flywheel (the superscript t denotes transposition), Ci is the moment  of inertia of the ith flywheel 
about its axis of rotation, L0 is the angular momentum of the system of bodies in the system of coordinates 
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O~rl~, R ¢ SO(3) is the matrix of a rotation transforming the axes O~rl~ into axes Oxyz, and xi is a control 
torque applied to the axis of the ith flywheel. 

Henceforth we will use a common notation for (1.1) and (1.2) 

M ~  + to × N(c.O, Lo) = U (1.3) 

and consider the equation along with the Poisson kinematic equations 

si =--(03-c0~)x s/ ( i=  1,2,3) (1.4) 

The inertial parameters and angular momentum of the dynamical object (1.3), (1.4) are unknown. 
It is required to determine a control torque u and adjustment law for the control parameters of the 
system so that the axes cl, c2, c3 attached to the body will stabilize in the direction of the corresponding 
fixed axes sl, s2, s3 and the angular velocity ¢o will tend to cod. 

To determine the control law we will use the following property of the dynamical object (1.3). 
1. The equation of dynamics (1.3) canbe expressed in a form that is linear in the vector of unknown 

parameters 0 e R v 

M ~  r +co r × N(c.o, Lo) = Y(c.O, COr,(Or )O (1.5) 

where C0r, ¢br e R 3 are arbitrary vectors, the vector 0 contains the unknown components of the inertia 
matrix and the angular momentum, and Y is a known 3 ×p matrix-valued function. 

If the control is established by means of a couple of reactive forces and Oxyz are the principal central 
axes of inertia of P0, then N(co, L0) = Moo, O = (A, B, C) t and the 3 × 3 matrix Y is 

f~rl  --{02f'0r3 C0 r20")3 

Y = f'l) I tot) r 3 f~r2 --(l)r I ('03 

--('01C0r2 td0rltdO2 fJ)r3 

The following passivity property of the dynamical object is useful in finding the Lyapunov function 
used in synthesizing the control. 

2. The differential equation (1.3) defines a passive mapping u --> co, that is 

SoUto~d'~ >I ~ for all T > 0 and some T e R. (1.6) 

To prove inequality (1.6), we find 

ion' ( M(o + co x N(co, L o ) )d'c = 1 (o '  (T)Mo~(T) - cot (0)Me0(0)) i~2 
0 

We now introduce the normed spaces of square-integrable functions 

t4(R÷)= x:R÷ - ,  R"iIIx(t)12dtl <0o 

and bounded functions 

L~(R+)= {x:R+ ---> R" te[o.**)sup x(t)l<**} 

where R+ is the set of non-negative real numbers. 

L e m m a  1. Let  x: R+ ---> R"  be a real piecewise-smooth vector-valued function such that x ~ L~ f3 L" 
and k e Lg. Then x ---> 0 as t ---> **. 

Proof. It follows from the assumptions of the lemma that the function q~ = x~r: R+ ~ R 1 satisfies the 
conditions 
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9 =  2xtk e L** and 7q~dt=Txtxdt~eonst (1.7) 
0 0 

Consequently, q~ is in L1 and is also uniformly continuous on R+. Therefore [5] 9 --* 0 as t ~ ** and so alsox --~ 0 
a s  t ---) oo. 

2. S Y N T H E S I S  OF T H E  D Y N A M I C  C O N T R O L  W I T H  
P A R A M E T E R  A D J U S T M E N T  

We now define vector-valued functions characterizing the tracking errors of  the programmed motion 

e = ~ , k i s i x c i ,  t O r = t a d - A e ,  v = t a - t O  r (2.1) 

The vector e • / ~  characterizes the orientation error of the rigid body; ki are pairwise distinct positive 
numbers (i -- 1, 2,. 3). The vector v • R 3 takes the orientation error and angular velocity error  into 
account: v = toe + Ae, where toe = to -'tad and A > 0. In all cases summation is from i = 1 to i = 3. 

Let  Or = R p be a parameter-estimate vector for the object and 0e • R ~, 0e = 0, - 0 the vector of  
parameter-estimate errors. It is assumed that the programmed motion satisfies the desired smoothness 
conditions tad e Ct(R+). 

The problem is to define a control u(t) and a parameter-adjustment law so that the following control 
objective is attained 

lim to = tad, lim s i = ci, i = 1, 2, 3 (2 .2)  
t--)m t,-.-)oo 

We will also define an auxiliary control objective 

lim to = co d, lira e = 0 (2.3) 
l--~oo l--~oo 

which determines the convergence of  the motions of the body to motions to = tad, $1 ~" "+'Cl, $2 m + C 2  ' 

s3 = sl x s2, one of  which corresponds to the programmed trajectory. 

L e m m a  2. For all T > 0 

T 
Icoteedx >~ -72,  7 2 = 2~,k  i (2.4) 
0 

Proof. Substitution of (2.1) into (2.4) gives 

T i=3 Ti=3 Ti=3 i=3 
t T>~ 2 ItOte ~, kisi xcidx= I y~ kicI(t°e xsi)dx = - I  y" kiclsi d'c = - Y- kicisi 0~- ' [  

0 i=l  0 i= l  0 i= l  i--I 

L e m m a  3. If v • L~, then e, toe • L~. 

Proof. Using (2.1) and Lemma 2, we find that 

T 2 T T T ** 
~Oed'C + Je2d'c = ~v 2d~-2A~coteed'¢<~ ~u 2 d ~ +  2A~ '2  < ** 

0 0 0 0 0 
(2.5) 

Now let T---> **. 

Consider the following Lyapunov function 

V = [u tMv + 0teF-t0¢ ] / 2 (2.6) 

where F is the symmetric positive-definite 3 x 3 matrix of feedback coefficients. 
Differentiation of  Eq. (2.6) along the trajectories of the system yields the control and parameter- 

adjustment law 
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u = Mr(O~ +`or x N(to, Lor)- Kdu 

Or = - r Y t  (to'to~'(Or ) v 

(2.7) 

(2.8) 

where K d  is the symmetric positive-definite 3 x 3 matrix of feedback coefficients and Mr and L0~ are 
estimates for the inertia tensor and angular momentum vector. 

Theorem 1. Consider the motion of the rigid body (1.3), (1.4) subject to a control (2.7) and parameter- 
adjustment law (2.8). Then the bounded programmed trajectories COd, (oa ~ L3(R+) achieve the auxiliary 
control objective (2.3) and the motions of the rigid body tend to asymptotically stable motions ca = COd, 
Sl = ±Cl, s2 = ±c2, s3 = Slx  s2. The adjusted-parameter vector Or and control u remain bounded. 

Proof. Differentiation of Eq. (2.6), taking (1.3) and (1.4) into account, yields 

k' =v t M ( o -  ~ r ) +  0t, F-10e =v t ( u - t o ,  x N(to, L o ) - M ~ ) + O t ,  F-IO, 

Using the linear representation (1.5) and taking (2.7) and (2.8) into account, we obtain 

= -v 'Kao (2.9) 

Here we have used the equality (~, = (~,, since 0 = 0. It follows from (2.6) and (2.9) that 

Using Lemma 3, we obtain toe, e e L 3, and it follows from the fact that e and v are bounded 
that toe e L~. 

Differentiation of Eq. (2.1) gives 

= - E  ki (to,  x si) x ci 

that is, the boundedness of % implies that of ~. Consequently, by Lemma 1, e ~ 0 as t ---) **. 
We now prove that the vector v tends to zero. Since COd e L3~, the fact that to e is bounded implies 

that to is bounded. Taking into account that 0e, to, COd, e ,  are bounded, we deduce from (2.7) that the 
control u is bounded. It then follows from (1.3) that tb ~ L3**. Since tb is bounded, the same is true of 
1) and so, by Lemma 1, v---) 0 as t--) 00. 

Since v and e tend to zero as t --) 00, it follows that the motions of the rigid body tend to asymptotically 
stable motions to = tod, sl = ---+cl, s2 = ±c2, s3 = Sl X S2, one of which corresponds to the programmed 
trajectory. 

As an example, let us consider the problem of stabilizing a given position of a rigid body. Setting % = ta a = 0 
in (2.7), we obtain 

u = - K d t O -  g d ~ , k i $  i X c  i - AY( to , e , i~ )O r (2.10) 

This control differs from the stabilizing control of [2, p. 425] by dynamical terms proportional to the estimated 
parameters of the object, which improve the convergence of the orientation error to zero. 

3. E X P O N E N T I A L  S T A B I L I Z A T I O N  OF THE M O T I O N  

To obtain exponential stabilization of a programmed motion and convergence of the estimated para- 
meters of the object to their real values, we replace the Lyapunov function (2.6) by 

v =lZ 2to 'My ÷ 0 : r ' 0 ,  ÷ ÷llMv  '0.11 = (3.1) 

where e ~ R 3 is an auxiliary vector and 9 is a p  x 3 matrix-valued function. 
An additional term analogous to the last term in (3.1) was used in [6] for the exponential stabilization 

of the motion of a manipulator with rigid arms. 
Differentiation of Eq. (3.1) gives the following control and parameter-adjustment law 
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u = YcOr - Kpe  - a o ,  O~ = -Fytcu  + ~,cF(p¢ (3.2) 

= -~.~e  - otu - K p e  + ~pTYtu  - Z.c(pT(pe, ;p = -~,~(p + Y~ 

where L~ > 0 and tt > ~(OM) 2, OM being the largest eigenvalue of M; the 3 ×p matrix-valued function 
Yc is defined by the equality 

Yc(03,03r,Cbc)O = M(o c +to r x N(c0,L0), (bc =60 r -~.ev 

The matrix F in (3.2) is adjusted by using the method of least squares [7] 

(3.3) 

=-~-t~0~-~.(t)r-~), r'(0) (0)>0, IIr(0)ll k0; 1 -I I (3.4) 

with a time-dependent parameter ~,(t). 
The adjustment law (3.4) has the following properties: (a) for any t ~ 0 we have inequalities ~ t )  

0 and F(t) ~</co/; (b,) for programmed motions with non-vanishing action, i.e. for which positive numbers 
I~1, ~2 and 8 such that 

t+8 
~113 ~ I~t('g)~O('g)d'~ ~ ~2/3 (3.5) 

f 
for any t I> 0, a positive number 7q >~ 0 exists such that 7~(t) ~ kl for any t >-- 0. 

If the variable Z(t) can be separated from zero, one can ensure that the parameter-estimate vector 
O, will converge to its true value. 

The control (3.2)-(3.4) is composite [7], since the parameter-adjustment operation uses both 
information aboull the tracking error of the programmed motion and the predicted value of the 
error .  

Theorem 2. Cormider the motion of a rigid body (1.3), (1.4) with the control and parameter-adjustment 
law (3.2)-(3.4), Then, if the programmed motions COd, (Oa ~ L ~ ( R + )  are bounded, the auxiliary control 
objective (2.3) will be achieved. 

Moreover, if the programmed motion is such that the non-vanishing action condition (3.5) holds, 
then 

(a) the vector 0, tends to the true value of the object parameters; 
(b) the vector e tends to zero, E ---) 0; 
(c) all steady motions 03 = COd, Sl = --cl, s2 = --c2, s3 = Slx s2, 0e = e = 0 except the programmed 

motion are unstable, and the Lyapunov function (3.1) tends exponentially to zero in the domain 

( '  ) D:{s:ete > A-IVs }, V s = •ki(c i - si) 2 (3.6) 
i=l 

Proof. Differentiation of the first term in (3.1), taking (1.3), (1.5) and the first equation of (3.2) into 
consideration, yields 

T 1 =u  t (u  - o3 x N ( 0 3 , L o ) -  M(or )  =u t(u -03t × N(03, L0)- M(Or) = 

=v t (u  - Yc 0 - L c M u  ) = -g~t: t M v  +u t (u  - YcOr + YcOe) = 

= -~.cu t M u  - O W  to - KrP t e + u  tycO e 

Differentiation of the second and third terms of (3.1) gives 

t -I " ~'. , .[  + r3 =0+r 0+ +  (,)ll0+llF ,)+ Kp03te e 

(3.7) 

(3.8) 

where II X Ila is the quadratic norm generated by a symmetric matrixA. 
Differentiation of the last term in (3.1), taking (3.2) into consideration, gives [6] 
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T 4 = ( M y  - e - qfO e )t ( _ ~ . c M  u + YcOe _ K p e  - OW - ~ - ~otO, - ~ptO e ) = 

(3.9) 

Setting Ix = 2au  in (3.9) and adding equations (3.7)-(3.9) together, we obtain 

<~ - ~cl) t Mo - ~ [ M y - E -  cpt Oe 12- - ~  k(t)]lOe 112r-, - Kp A e ' e  (3.10) 

The first part of the theorem now follows from (3.1) and (3.10). 
We will now show that the parameter-estimate vector tends to its true value: 0e ~ 0, provided condition 

(3.5) holds. Taking (3.5) into account, we deduce from (3.1) and (3.10) that 0e ~ L~ A LV**. 
We will now prove that 0e is bounded because of the second equality of (3.2). Hence 0e -o 0 as 

t ----~ oo. 
Now e ~ 0, since 11 = M v  - e - ~ptOe - o  O, which in turn follows from rl ~ L~ N L3** (3.10) and the 

boundedness of the derivative ~ ~ L3** (3.2). 
Using the convergence of the parameter-estimate vector to its true value, we will now show that all 

steady motions other than the programmed motion are unstable in Lyapunov's sense. 
We will show, for example, that the steady motion c0 = COd, sl = --cl, s2 = c2, ss = --c3, 0e = e = 0 is 

unstable. To that end, take the function 

Vc t OtmU + O t F - l O e - k l (  c' +si)  2 + k 2 ( c 2 - s 2 ) 2 - k 3 ( c 3  +$3)2]+ Imu (3.11) 

which is bounded in the domain V~ < 0, exists in an arbitrarily small neighbourhood of the steady motion 
co = o~a, sl = -cl,  s2 = c2, ss = -c3, 0e = e = 0 for all t I> to and has a negative-definite derivative (3.10). 
Now apply Chetayev's instability theorem [8]. 

The proof that the other steady motions are unstable is analogous. In the domain (3.6), inequality 
(3.10) may be written as follows: 

V + y V ~  < 0, y=min{~c,~c~, l / 2 , 2 } > 0  (3.12) 

This relationship implies that the Lyapunov function tends exponentially to zero. This completes the 
proof of the theorem. 

As an example, let us consider the I~roblem of stabilizing the orientation of a rigid body in a given direction 
So(t). Put e = So x Co and V5 = (So - Co)', where Co is a unit vector attached to the body. The first relationship for 
the controlling torque transforms to 

u = Mr~ d +tO d × N(o~,LOr ) -  Kee-  K v to e -AY(o~,e,e)O r (3.13) 

K e =(Kp +CL, k)I 3 +J~cAMr, K v =a/3 +~,cMr 

The domain (3.6) is 

D:{so:(SOC O) > 2 /A- l}  (3.14) 

On a sphere of unit radius about the point 0, this expression defines a domain with the following property: if 
the end of the unit vector So is within the domain, one obtains exponential stabilization of the motion provided 
condition (3.5) holds. If A > 1, Do encloses the equilibrium position So = Co, and as A decreases it tends to the 
unit sphere. 
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